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1 Abelian categories

Abelian categories generalize some very useful features of the category of abelian
groups. In particular, morphisms in abelian categories can be added and possess
the notions of kernel and cokernel with the desired properties. Thanks to these
properties, the discipline of homological algebra becomes a powerful tool, with
direct applications in areas such as topology or algebraic geometry.
Intuitively, abelian categories resemble the category of abelian groups Ab.
Apart from Ab itself, some examples of abelian categories include the
category R-Mod of left (equivalently right) modules over a given ring R, the
category k-Vect of vector spaces over a field k or the category Abfin of finitely
generated abelian groups.
We will need some preliminary definitions before getting to the the concept of
abelian category.

1.1 Definitions and basic properties

Definition 1.1. A category A is called a preadditive category or Ab-category
if, for every pair of objects A and B in A, the hom-set HomA(A,B) has the
structure of an abelian group where composition distributes over addition. This
means, given a diagram of the form

A B C D
f g

g′

h

then f(g + g′)h = fgh+ fg′h.

Notice that, in an Ab-category, the hom-set HomA(A,A) has the structure of
an associative ring.

Definition 1.2. Given two Ab-categories A,B, a functor F : B → A is called
an additive functor if, for each pair of objects B,B′ in B, the map

HomB(B,B′) HomA(F (B), F (B′))

is a group homomorphism, i.e. F (f + f ′) = F (f) + F (f ′) for f, f ′ : B → B′.

Definition 1.3. An Ab-category A is called an additive category if it has an
initial object 0 and a product A×B for each pair of objects A,B in A.
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Proposition 1.4. In an additive category, the coproduct of any two objects
exists and is isomorphic to their product.

Proof. Let A be an additive category and A,B two objects in A. Consider the
product A×B and the maps

A A×B Bα β

given by α = idA × 0 and β = 0× idB . Let us see that this defines a coproduct.
Given an object C and maps f : A → C and g : B → C, we seek for a unique
h : A× B → C such that hα = f and hβ = g. Set h = f ◦ πA + g ◦ πB . Then,
one checks that hα = (fπA + gπB)(idA × 0) = f idA + g0 = f, and equivalently
hβ = g. Uniqueness follows by observing that if f = idA, one needs hα = idA,
and similarly with g = idB . Thus, A × B satisfies the universal property of
coproducts.

Using induction, the statement follows for any finite coproduct.

Definition 1.5. An abelian category is an additive category A satisfying the
following properties:

1. Every map in A has a kernel and a cokernel.

2. Every monic in A is the kernel of its cokernel.

3. Every epi in A is the cokernel of its kernel.

Remark 1.6. In the abelian categories mentioned at the start of the section,
the kernel and cokernel of a given map are the usual ones in group, module or
vector space homomorphisms, respectively. However, we notice that Groups
is not an abelian category: it suffices to take the inclusion map H ↪→ G of a
non-normal subgroup H of a group G. This is a monic map, but it can never
be a kernel, as kernels are normal subgroups.

In particular, in an abelian category monics are kernels and epis are cokernels.
Next, we can also define the notion of image of a morphism, by replicating the
construction in abelian groups. In this way, the resulting object will match the
image set in the case that the corresponding objects contain underlying sets.
Given a morphism f : A → B, consider the diagram

A B coker f

ker(coker f)

f

where the arrows B → coker f and ker(coker f) → B are given by definition
of kernel and cokernel. By the universal property of the kernel, there exists a
unique A → ker(coker f). In abelian groups, given that coker f ∼= B/ im f , this
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is exactly the codomain restriction of f to its image im f. Hence, we define the
object

im f := ker(coker f).

The next result has been proved in Exercise 1(c).

Proposition 1.7. The map A → im f is epi.

Once we have defined the image, the notion of exactness arises.

Definition 1.8. A sequence of arrows A B C
f g

is called exact (at B)
if g ◦ f = 0 and the canonical morphism im f → ker g is an isomorphism.

Definition 1.9. A subcategory B ⊆ A is called an abelian subcategory if

1. B is abelian.

2. Every exact sequence in B is also exact in A.

Definition 1.10. An additive functor F : A → B between abelian categories
A and B is said to be left-exact (resp. right-exact) if, for every short exact

sequence 0 A B C 0 in A, the sequence

0 F (A) F (B) F (C)

(resp. the sequence F (A) F (B) F (C) 0 ) is exact in B.
A functor is called exact if it is simultaneously left- and right-exact.

Definition 1.11. A contravariant additive functor F : A → B is left-exact
(resp. right-exact) if F op : Aop → B is left-exact (resp. right).

Let us now see a couple of non-trivial examples of abelian categories.

Example 1.12.

1. Let R be a commutative ring, and consider the subcategory R-Modfin of
finitely generated R-modules. This category is abelian if and only if R is
a Noetherian ring. Indeed, if R is Noetherian, the kernel and image of a
morphism are finitely generated submodules of the corresponding modules,
and thus lie in the category. This need not hold if R is not Noetherian,
e.g. R = K[X1, X2, . . . ] for some field K. For instance, the kernel of the
morphism K[X1, X2, . . . ] → K mapping each Xi 7→ 0 is the submodule
(X1, X2, . . . ), which is not finitely generated.

2. Given a category I and an abelian category A, the functor category AI is
also an abelian category.

The next result presents characterizations of additive and abelian categories.
Its proof is left to the reader
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Proposition 1.13. Let C be a full subcategory of an abelian category A. Then:

1. C is additive if and only if 0 is in C and C is closed under products.

2. C is abelian and C ↪→ A is exact if and only if C is additive and closed
under kernels and cokernels.

Finally, we consider the following important example of a left-exact functor.

Proposition 1.14. Let A be an abelian category and M an object in A. Then
HomA(M,−) : A → Ab is a left-exact functor.

Proof. Consider an exact sequence 0 A B C 0α β
in A. Let us

check that

0 Hom(M,A) Hom(M,B) Hom(M,C)
α∗ β∗

is also exact. First, at Hom(M,A), consider γ ∈ Hom(M,A) such that α∗γ =
α ◦ γ = 0. Then, as α is monic by exactness, γ = 0. Thus, α∗ is also monic.
Then, at Hom(M,B), it is clear that (β∗ ◦ α∗)(γ) = β ◦ α ◦ γ for any
γ ∈ Hom(M,A). It remains to check that kerβ∗ ⊆ imα∗ as subgroups of
Hom(M,B). For that, take δ ∈ Hom(M,B) such that β∗δ = β ◦ δ = 0. Then,
since A ∼= ker(β) by exactness of the original sequence, the universal property
of kernels implies that there exists a (unique) γ ∈ Hom(M,A) such that
α ◦ γ = α∗γ = δ, as in the diagram.

A ∼= kerβ

M B C

γ

δ β

α

Thus, δ ∈ imα∗ as we wished.

Corollary 1.15. The functor HomA(−,M) is a left-exact contravariant
functor.

Proof. It suffices to notice that HomA(A,M) = HomAop(M,A) for any A in A,
as arrows are reversed in Aop. The statement then follows from the previous
proposition.

1.2 Freyd-Mitchell embedding theorem

The following result provides an inclusion of any abelian category into a category
of modules over a certain ring, preserving the underlying categorical structure.
This is a very powerful result, as it allows to regard objects in abelian categories
as modules, thus possessing the numerous well-known algebraic properties of
these.
For its statement, recall that a category is called small if the class of all its
objects is a set. Furthermore, in the next pages we will work with the Yoneda
embedding h : A → AbA, defined on any abelian category A. This is given by
h(A) = HomA(−, A) for each object A in A.

4



Theorem 1.16. Let A be a small abelian category. Then, there exists a ring
R and an exactly fully faithful functor i : A ↪→ R-Mod.

Proof (sketch). The Yoneda embedding h : A → AbA is a left-exact functor,
but not right-exact in general. It factors through the category L of left-exact
functors Aop → Ab. This is an abelian category, and the functor A → L is
actually exact.
It can be shown that L is equivalent to R-Mod for R := HomL(P, P ), where P
is some special object.

Example 1.17. ConsiderA to be the category of Z-graded R-modules for a ring
R. Then A injects into the category of

∏
i∈Z R-modules of the form

⊕
i∈Z Mi.

1.3 The Yoneda lemma

The Yoneda lemma is one fundamental result in category theory, providing a
representation of any small category C via functors from C to Set. Here, we
state a special instance of the main result.

Theorem 1.18. The Yoneda embedding h : A → AbA reflects exactness, i.e.

a sequence A B Cα β
is exact in A if for all M in A, the sequence

HomA(M,A) HomA(M,B) HomA(M,C)
α∗ β∗

is exact.

Proof. Consider a sequence A B Cα β
in A. First, we may take M = A

in the hypothesis. By exactness of the sequence in AbA, we have

0 = (β∗ ◦ α∗)(idA) = β ◦ α ◦ idA = β ◦ α.

It remains to show that the universal map between imα and kerβ is an
isomorphism. In this case, pick M = kerβ with i : kerβ → B. Since
β ◦ i = β∗i = 0, then i ∈ imα∗, i.e. there exists γ : kerβ → A such that
i = α∗γ = α ◦ γ. Next, let us consider the construction of imα as in the

definition, giving rise to arrows A imα Bα′ j
. Given that

β ◦ j ◦ α′ = β ◦ α = 0 and α′ is epi, then β ◦ j = 0 as well. Hence, by the
universal property of the kernel, there exists δ : imα → kerβ such that
j = i ◦ δ. This is displayed in the following diagram.

kerβ

A B C

imα

α β

i

j
α′

γ

δ
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Finally, notice that jα′γδ = αγδ = iδ = j. Since j is monic, this implies
α′γδ = idimα. A parallel argument leads to δα′γ = idker β , and we deduce that
δ is an isomorphism, as we wanted to show.

Remark 1.19. The converse of the Yoneda lemma is not true in general. For

example, consider the exact sequence Z Z/2Z 0π in the category of

abelian groups. Taking M = Z/2Z, one gets the following sequence between
hom-sets

Hom(Z/2Z,Z) Hom(Z/2Z,Z/2Z) 0
π∗

However, π∗ cannot be surjective because Hom(Z/2Z,Z) is the trivial group
while Hom(Z/2Z,Z/2Z) ∼= Z/2Z. Thus note that, in Proposition ??, we need
the injectivity of α for the resulting sequence to be exact at the middle position.

This allows to state the following result between adjoint functors, proved in
Exercise 3. Recall the definition of an adjoint pair of functors: given categories
A and B, a pair of functors L : A → B and R : B → A is said to be adjoint if

there is a natural isomorphism HomB(L(A), B)
≃−→ HomA(A,R(B)).

Corollary 1.20. Let A and B be abelian categories, and let L : A → B and
R : B → A be an adjoint pair of functors. Then L is right-exact and L is
left-exact.
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